E- Mail:jianmin@ustc.edu.cn
個人主頁:http://staff.ustc.edu.cn/~jianmin/
實驗室主頁:http://ai.ustc.edu.cn
主要研究方向:認知機器人,深度強化學習,知識表示與推理。
吉建民,中國科學技術大學副教授,碩士生導師。在中國科學技術大學計算機學院獲得學士、博士學位,曾任香港科技大學博士後,阿爾伯塔大學、卡內基梅隆大學訪問學者。主要研究方向為認知機器人、知識表示與推理、深度強化學習。連續10年負責中科大“可佳”“佳佳”機器人認知模塊,並獲世界冠軍。在人工智能、機器人頂級期刊和會議發表論文多篇。長期擔任JAIR、AAAI、IJCAI、AAMAS、KR、ICRA等國際頂級期刊和會議(高級)程序委員會委員。
主要工程項目:
“可佳”、“佳佳”機器人認知係統 http://ai.ustc.edu.cn/
中國家用服務機器人仿真測試平台 http://www.wrighteagle.org/homesimulation/
獲獎情況:
認知技術被《Artificial Intelligence》評為機器人認知方麵十年最佳技術成果(Best Technique Solution);
獲得第23屆國際人工智能聯合大會(IJCAI-13)最佳自主機器人獎(Best Autonomous Robotics Video)
十篇代表性論著:
Jianmin Ji, Fangfang Liu, and Jia-Huai You*. Well-founded operators for normal hybrid MKNF knowledge bases. Theory and Practice of Logic Programming 17.5-6, pages 889-905, 2017.
Jianmin Ji, Hai Wan*, Kewen Wang, Zhe Wang, Chuhan Zhang, and Jiangtao Xu. Eliminating Disjunctions in Answer Set Programming by Restricted Unfolding. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16), pages 1130-137, 2016.
Jianmin Ji, Yisong Wang*, and Jiahuai You. On Forgetting Postulates in Answer Set Programming. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), pages 3076-3083, 2015.
Jianmin Ji, Hai Wan*, Ziwei Huo, and Zhenfeng Yuan. Simplifying a Logic Program Using Its Consequences. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), pages 3069-3075, 2015.
Jianmin Ji, Hai Wan*, and Peng Xiao. On Elementary Loops and Proper Loops for Disjunctive Logic Programs. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), pages 1518-1524, 2015.
Jianmin Ji, Hai Wan*, Ziwei Huo, and Zhenfeng Yuan. Splitting a Logic Program Revisited. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), pages 1511-1517, 2015.
Jianmin Ji and Fangzhen Lin*. Position Systems in Dynamic Domains. Journal of Philosophical Logic (JPL) 44(2), pages 147-161, 2015.
Jianmin Ji and Xiaoping Chen*. A Weighted Causal Theory for Acquiring and Utilizing Open Knowledge. International Journal of Approximate Reasoning (IJAR) 55(9), pages 2071-2082, 2014.
Jianmin Ji, Hai Wan*, Peng Xiao, Ziwei Huo, and Zhanhao Xiao. Elementary Loops Revisited. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14), pages 1063-1069, 2014.
Xiaoping Chen, Jianmin Ji*, and Fangzhen Lin. Computing loops with at most one external support rule. ACM Transactions on Computational Logic (TOCL) 14(1), pages 3-37, 2013.