陳 雪

E-Mail: xuechen1989@ustc.edu.cn

個人主頁:http://staff.ustc.edu.cn/~xuechen1989/   

英文詳細簡曆:http://staff.ustc.edu.cn/~xuechen1989/cv.pdf

主要研究方向:隨機算法和偽隨機,大數據算法,機器學習理論,理論計算機和密碼學基礎


 陳雪,中國科學技術大學計算機學院特任教授。本科畢業於清華大學姚班,博士畢業於美國德克薩斯大學奧斯丁分校計算機係,師從 David Zuckerman。曾在美國西北大學任博士後研究員,美國喬治梅森大學任助理教授。主要的研究方向是理論計算機,包括隨機算法和偽隨機,大數據算法,機器學習理論和密碼學基礎。在STOC, FOCS, SODA, COLT等理論計算機科學的一流國際會議上發表論文十餘篇。

 

招生信息

歡迎對大數據算法,機器學習理論,理論計算機,組合數學和應用概率論感興趣的同學加入我們的科研小組。如果有感興趣的課題,請發送郵件至 xuechen1989@ustc.edu.cn

 

代表性論著

  1. Xue Chen and Michal Derezinski. Query Complexity of Least Absolute Deviation Regression via Robust Uniform Convergence. In Conference on Learning Theory (COLT), to appear, 2021.

  2. Xue Chen, Anindya De, and Rocco A. Servedio. Testing Noisy Linear Functions for Sparsity. In ACM Symposium on Theory of Computing (STOC), pages 610--623, 2020.

  3. Pranjal Awasthi, Xue Chen, and Aravindan Vijayaraghavan. Estimating Principal Components under Adversarial Perturbations. In Conference on Learning Theory (COLT) PMLR 125:323--362, 2020.

  4. Xue Chen and Anindya De. Reconstruction under outliers for Fourier-sparse functions. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2010--2029, 2020.

  5. Xue Chen and Eric Price. Active Regression via Linear-Sample Sparsification. In Conference on Learning Theory (COLT), PMLR 99:663--695, 2019.

  6. Xue Chen. Derandomized Balanced Allocation. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2513--2526, 2019.

  7. Xue Chen, Daniel Kane, Eric Price, and Zhao Song. Fourier-sparse Interpolation without a Frequency gap. In Symposium on Foundations of Computer Science (FOCS), pages 741--750, 2016.


Baidu
map